← Wednesday's Workflows

Strategic Planning System Architecture πŸ—οΈ

From 10 to 10,000 users with ML-driven insights and enterprise compliance

September 25, 2025
πŸ“Š StrategyπŸ—οΈ Multi-AgentπŸ”’ EnterpriseπŸ“ˆ Scalable

From prompts to production strategic planning system.

Monday: 3 core prompts for OKR tracking. Tuesday: automated dashboard code. Wednesday: team workflows across strategy roles. Thursday: complete technical architecture with multi-agent orchestration, ML insights, and enterprise-grade scaling.

Key Assumptions

  • β€’Organization tracks 50-500 OKRs across 5-20 departments
  • β€’Daily progress updates from 10-10,000 active users
  • β€’Integration with existing tools (Notion, Asana, Jira, Slack)
  • β€’SOC2 Type II compliance required for enterprise customers
  • β€’Multi-tenant SaaS with data isolation and optional private deployment

System Requirements

Functional

  • OKR creation, tracking, and hierarchical rollup (company β†’ department β†’ team β†’ individual)
  • Automated progress calculation from integrated data sources (Jira tickets, CRM deals, analytics)
  • ML-driven risk detection (at-risk OKRs, blocked dependencies, resource constraints)
  • Real-time dashboards with drill-down capabilities
  • Automated reporting (weekly summaries, quarterly reviews, annual planning)
  • Natural language query interface for executives (e.g., 'Show me at-risk Q3 OKRs')
  • Collaboration features (comments, @mentions, approvals, version history)

Non-Functional (SLOs)

latency p95 ms500
freshness min15
availability percent99.9
data accuracy percent99.5

πŸ’° Cost Targets: {"per_user_per_month_usd":15,"ml_inference_per_1k_queries_usd":2,"storage_per_gb_per_month_usd":0.5}

Agent Layer

planner

L3

Decompose user requests into subtasks and select appropriate agents/tools

πŸ”§ Query parser, Permission checker, Agent registry lookup

⚑ Recovery: If parsing fails β†’ fallback to keyword search, If no suitable agent β†’ route to human support queue, Retry with simplified plan if initial plan fails

executor

L2

Execute the primary workflow (OKR updates, progress calculation, data sync)

πŸ”§ Database writer, Integration APIs (Notion, Jira), Progress calculator, Rollup aggregator

⚑ Recovery: Transaction rollback on partial failure, Retry with exponential backoff (3x max), Queue for manual review if all retries fail

evaluator

L2

Validate outputs for quality, accuracy, and completeness

πŸ”§ Schema validator, Anomaly detector (ML model), Consistency checker

⚑ Recovery: If validation fails β†’ block output and alert, If anomaly detected β†’ flag for human review, Log all validation failures for retraining

guardrail

L4

Enforce policies, redact PII, apply safety filters

πŸ”§ PII detector (AWS Comprehend/Presidio), Policy engine, Content filter

⚑ Recovery: If PII detected β†’ block output and redact, If policy violation β†’ reject request and log, Escalate high-risk content to security team

query

L3

Parse natural language queries and generate SQL/filters

πŸ”§ NL-to-SQL model (fine-tuned GPT-4), Permission filter injector, Query optimizer

⚑ Recovery: If SQL generation fails β†’ fallback to keyword search, If query timeout β†’ simplify and retry, Cache common queries for fast path

insight

L3

Generate ML-driven insights, risk alerts, and recommendations

πŸ”§ Risk prediction model, Insight generator (LLM), Recommendation engine

⚑ Recovery: If model inference fails β†’ use rule-based fallback, If LLM timeout β†’ return cached insights, Flag low-confidence insights for human review

ML Layer

Feature Store

Update: Hourly for real-time features, daily for aggregates

  • β€’ okr_progress_velocity (change per week)
  • β€’ historical_completion_rate (by owner)
  • β€’ dependency_count
  • β€’ team_utilization_percent
  • β€’ external_blocker_count
  • β€’ comment_sentiment_score

Model Registry

Strategy: Semantic versioning with A/B testing for new models

  • β€’ risk_predictor
  • β€’ progress_forecaster
  • β€’ insight_generator

Observability

Metrics

  • πŸ“Š api_latency_p50_ms
  • πŸ“Š api_latency_p95_ms
  • πŸ“Š api_latency_p99_ms
  • πŸ“Š agent_execution_time_ms
  • πŸ“Š ml_inference_latency_ms
  • πŸ“Š okr_update_rate_per_min
  • πŸ“Š integration_sync_success_rate
  • πŸ“Š cache_hit_rate
  • πŸ“Š db_query_time_ms
  • πŸ“Š error_rate_percent

Dashboards

  • πŸ“ˆ ops_dashboard
  • πŸ“ˆ ml_dashboard
  • πŸ“ˆ business_metrics_dashboard
  • πŸ“ˆ security_audit_dashboard

Traces

βœ… Enabled

Deployment Variants

πŸš€ Startup

Infrastructure:

  • β€’ Vercel (frontend + API routes)
  • β€’ Supabase (PostgreSQL + auth)
  • β€’ Upstash Redis (cache)
  • β€’ OpenAI API (direct)
  • β€’ GitHub Actions (CI/CD)

β†’ Deploy in <1 day

β†’ No DevOps required

β†’ Pay-as-you-go pricing

β†’ Single-tenant by default

β†’ Cost: $200-800/month for 100 users

🏒 Enterprise

Infrastructure:

  • β€’ AWS EKS or GKE (Kubernetes)
  • β€’ Aurora PostgreSQL (multi-region)
  • β€’ ElastiCache Redis (cluster mode)
  • β€’ SageMaker (model serving)
  • β€’ Private VPC with VPN/Direct Connect
  • β€’ BYO KMS for encryption keys
  • β€’ SSO via SAML 2.0
  • β€’ Dedicated support + SLA

β†’ Multi-tenant with VPC isolation

β†’ Data residency (EU, US, APAC)

β†’ SOC2 Type II certified

β†’ Custom compliance (HIPAA, FedRAMP available)

β†’ Cost: $10K-50K/month for 10K+ users

πŸ“ˆ Migration: Start with startup stack. Migrate to Kubernetes when >1,000 users. Add multi-region when >5,000 users. Private cloud for enterprise contracts.

Risks & Mitigations

⚠️ LLM hallucinations in executive insights

Medium

βœ“ Mitigation: 4-layer hallucination detection. Human review for high-stakes insights. Confidence scores shown to users.

⚠️ Integration API rate limits (Notion, Jira)

High

βœ“ Mitigation: Implement backoff/retry. Cache aggressively. Batch requests. Offer webhook alternatives.

⚠️ Multi-tenant data leakage

Low

βœ“ Mitigation: Row-level security in DB. VPC isolation for enterprise. Automated security testing. Annual penetration tests.

⚠️ ML model drift (accuracy degradation)

Medium

βœ“ Mitigation: Weekly drift monitoring. Automated retraining pipeline. A/B testing before rollout. Fallback to rule-based system.

⚠️ Scaling costs (LLM API usage)

High

βœ“ Mitigation: Aggressive caching. Batch requests. Use smaller models where possible. Cost alerts at $X/day.

⚠️ Single LLM provider dependency

Medium

βœ“ Mitigation: Multi-provider setup (OpenAI + Anthropic). Automatic failover. Standardized prompt interface.

⚠️ Complex agent orchestration failures

Medium

βœ“ Mitigation: Extensive testing. Simplified fallback paths. Circuit breakers. Comprehensive logging for debugging.

Evolution Roadmap

1

Phase 1: MVP (0-3 months)

Months 0-3
  • β†’ Launch core OKR tracking
  • β†’ Basic progress calculation
  • β†’ Notion/Jira integration
  • β†’ Simple dashboard
2

Phase 2: Intelligence (3-6 months)

Months 3-6
  • β†’ Add ML-driven risk prediction
  • β†’ Multi-agent orchestration
  • β†’ Automated insights
  • β†’ Advanced analytics
3

Phase 3: Enterprise (6-12 months)

Months 6-12
  • β†’ Multi-tenant with isolation
  • β†’ Enterprise compliance (SOC2)
  • β†’ Advanced integrations
  • β†’ Global scaling

Complete Systems Architecture

9-layer architecture from presentation to security

Presentation
Web Dashboard (React/Next.js)
Mobile App (React Native)
Slack Bot
Email Digest
API Gateway
Load Balancer (ALB/NGINX)
Rate Limiter (Redis)
Auth Middleware (OIDC/SAML)
API Router
Agent Layer
Planner Agent
Executor Agent
Evaluator Agent
Guardrail Agent
Query Agent
Insight Agent
ML Layer
Feature Store (Feast/Tecton)
Model Registry (MLflow)
Inference Service
Evaluation Pipeline
Integration
Notion Sync
Asana/Jira Adapter
Analytics Connector
Slack Webhook
Data
PostgreSQL (transactional)
Redis (cache)
S3 (archive)
Vector DB (embeddings)
External
LLM APIs (OpenAI/Anthropic)
Notion API
Jira API
Analytics APIs
Observability
Metrics (Prometheus)
Logs (CloudWatch/Datadog)
Traces (Jaeger)
Dashboards (Grafana)
Security
IAM/RBAC
KMS (secrets)
Audit Logger
WAF

Request Flow - Executive Query

ExecutiveAPI GatewayPlanner AgentQuery AgentML LayerData StoreInsight AgentDashboardPOST /query: 'Show me at-risk Q3 OKRs'Route to query pipelineParse NL query β†’ SQL/filtersRequest risk scores for Q3 OKRsFetch OKR data + progress historyReturn 150 Q3 OKRs with metadataRisk scores (23 at-risk, 127 on-track)Generate executive summaryFormatted response + visualizations200 OK: 23 at-risk OKRs with insights

Strategic Planning System - Hub Orchestration

8 Components
[gRPC]Execute OKR workflow[gRPC]Parse user query[gRPC]Generate insights[Event]Execution results[REST]Structured query[Event]Insights & alerts[gRPC]Validate outputs[REST]Validation report[gRPC]Apply policies[REST]Filtered data[REST]Persist OKR updates[REST]Tenant data[Kafka]Metrics stream[WebSocket]Real-time updatesPlanner Agent4 capabilitiesExecutor Agent4 capabilitiesQuery Agent4 capabilitiesInsight Agent4 capabilitiesEvaluator Agent4 capabilitiesGuardrail Agent4 capabilitiesMulti-Tenant Store4 capabilitiesAnalytics Engine3 capabilities
HTTP
REST
gRPC
Event
Stream
WebSocket

Strategic Planning System - Feedback & Refinement Loops

8 Components
[Stream]Draft OKR updates[Feedback]Refinement needed[Stream]Pre-filtered data[Feedback]Policy violations[WebSocket]Clarification request[WebSocket]Context & history[Event]Confidence signals[Event]Quality metrics[Kafka]Risk alerts[Kafka]Priority adjustments[Event]Validation results[Event]Policy violations[Kafka]Training signals[REST]Updated routing rules[REST]Policy updates[REST]Model refreshPlanner Agent3 capabilitiesExecutor Agent3 capabilitiesEvaluator Agent3 capabilitiesGuardrail Agent3 capabilitiesQuery Agent3 capabilitiesInsight Agent3 capabilitiesFeedback Collector3 capabilitiesLearning Service3 capabilities
HTTP
REST
gRPC
Event
Stream
WebSocket

End-to-End Data Flow

From OKR update to executive dashboard

1
User0ms
Updates key result progress β†’ New value + comment
2
API Gateway10ms
Authenticates & rate limits β†’ Validated request
3
Guardrail Agent50ms
Checks for PII in comment β†’ Redacted comment
4
Executor Agent30ms
Writes to database β†’ Updated record
5
Executor Agent80ms
Triggers rollup calculation β†’ Parent OKR progress
6
ML Layer20ms
Updates feature store β†’ New velocity metric
7
ML Layer40ms
Runs risk prediction β†’ Risk score (0.72)
8
Evaluator Agent15ms
Validates risk score β†’ Confidence: high
9
Insight Agent200ms
Generates alert if at-risk β†’ Alert message
10
Integration Layer100ms
Sends Slack notification β†’ Alert posted
11
Dashboard50ms
Refreshes real-time view β†’ Updated UI

Scaling Patterns

Volume
10-100 users
Pattern
Monolith + Managed Services
Architecture
β€’ Single Next.js app (Vercel)
β€’ Managed PostgreSQL (Supabase/RDS)
β€’ Redis cache (Upstash)
β€’ OpenAI API (direct calls)
Cost
$200/month
300-500ms p95
Volume
100-1,000 users
Pattern
Microservices + Queue
Architecture
β€’ API Gateway + App servers
β€’ Message queue (SQS/RabbitMQ)
β€’ Worker pool (3-5 instances)
β€’ PostgreSQL + read replicas
β€’ Redis cluster
Cost
$800/month
200-400ms p95
Volume
1,000-10,000 users
Pattern
Multi-Agent + ML Pipeline
Architecture
β€’ Load balanced API (ALB)
β€’ Agent orchestration (LangGraph)
β€’ Feature store (Feast)
β€’ Model serving (SageMaker/Vertex)
β€’ Multi-region DB (Aurora Global)
β€’ CDN (CloudFront)
Cost
$3,000/month
100-300ms p95
Volume
10,000+ users (Enterprise)
Pattern
Multi-Tenant + Private Cloud
Architecture
β€’ Kubernetes (EKS/GKE)
β€’ Tenant isolation (VPC per customer)
β€’ Dedicated DB instances
β€’ Private LLM endpoints
β€’ BYO KMS/HSM
β€’ SSO/SAML integration
Cost
$10,000+/month
50-200ms p95

Key Integrations

Notion

Protocol: REST API v1
User connects Notion workspace
Sync OKRs from Notion database
Bi-directional updates (every 15 min)
Conflict resolution (last-write-wins)

Jira

Protocol: REST API v3
Map Jira projects to OKRs
Sync ticket status β†’ KR progress
Webhook for real-time updates
Custom field mapping

Google Analytics / Mixpanel

Protocol: REST API
Define metric queries (e.g., DAU, conversion rate)
Fetch daily β†’ update KR current_value
Automated rollup to parent OKRs

Slack

Protocol: Slack API + Webhooks
Send alerts to configured channels
Slash commands (/okr status)
Interactive buttons (approve/reject)
Thread updates for comments

Security & Compliance

Failure Modes & Recovery

FailureFallbackImpactSLA
LLM API down (OpenAI outage)Switch to Anthropic Claude (multi-provider setup)Slight latency increase, no data loss99.9%
Database connection timeoutRead from replica, queue writesRead-only mode for <5 minutes99.95%
Integration API down (Jira/Notion)Queue sync jobs, retry with backoffDelayed updates (max 1 hour)99.5%
ML model inference timeoutUse rule-based risk scoringLower accuracy (85% vs 92%)99.0%
Cache (Redis) unavailableDirect DB queries (slower)Latency increases 2-3x99.9%
Agent orchestration failureRetry with simplified planDegraded functionality, core features work99.5%
PII detection service downBlock all processing (safety first)Temporary service unavailable100% (no PII leaks)

Multi-Agent Collaboration

How specialized agents work together autonomously

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Planner    β”‚ ← Orchestrates all agents
β”‚    Agent     β”‚
β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
       β”‚
   β”Œβ”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
   β”‚        β”‚          β”‚          β”‚          β”‚
β”Œβ”€β”€β–Όβ”€β”€β”  β”Œβ”€β–Όβ”€β”€β”  β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”  β”Œβ”€β”€β–Όβ”€β”€β”€β”€β”  β”Œβ”€β”€β–Όβ”€β”€β”€β”€β”
β”‚Exec β”‚  β”‚Evalβ”‚  β”‚Guardrailβ”‚  β”‚Query  β”‚  β”‚Insightβ”‚
β”‚Agentβ”‚  β”‚Agentβ”‚  β”‚ Agent   β”‚  β”‚Agent  β”‚  β”‚Agent  β”‚
β””β”€β”€β”¬β”€β”€β”˜  β””β”€β”¬β”€β”€β”˜  β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜  β””β”€β”€β”¬β”€β”€β”€β”€β”˜  β””β”€β”€β”¬β”€β”€β”€β”€β”˜
   β”‚        β”‚          β”‚          β”‚          β”‚
   β””β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
           β”Œβ”€β”€β–Όβ”€β”€β”€β”€β”€β”
           β”‚  Data  β”‚
           β”‚ Layer  β”‚
           β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Agent Collaboration Flow

1
Planner Agent
Receives user request β†’ Decomposes into tasks β†’ Routes to appropriate agents
2
Query Agent
If NL query β†’ Parse to SQL β†’ Fetch data
3
Executor Agent
If update β†’ Validate β†’ Write to DB β†’ Trigger rollup
4
Evaluator Agent
Validates output β†’ Checks quality β†’ Flags anomalies
5
Guardrail Agent
Scans for PII β†’ Redacts if found β†’ Applies policies
6
Insight Agent
If executive query β†’ Generate insights β†’ Recommend actions
7
Planner Agent
Aggregates results β†’ Returns to user

Reactive Agent

Executor Agent - Responds to commands, no planning
Autonomy: LowStateless

Reflexive Agent

Evaluator Agent - Uses rules + context
Autonomy: MediumReads context

Deliberative Agent

Query Agent - Plans query strategy, iterates
Autonomy: HighStateful

Orchestrator Agent

Planner Agent - Coordinates all agents, makes routing decisions
Autonomy: HighestFull state management

Levels of Autonomy

L1
Tool
Human calls, agent responds
β†’ Monday's prompts
L2
Chained Tools
Sequential execution
β†’ Tuesday's automation
L3
Agent
Makes decisions, can loop
β†’ Query Agent parsing NL
L4
Multi-Agent
Agents collaborate autonomously
β†’ This system

Advanced ML/AI Patterns

Production ML engineering beyond basic API calls

RAG vs Fine-Tuning

Hallucination Detection

LLMs hallucinate OKR progress or fake dependencies
L1
Confidence scores from model (<0.8 = flag)
L2
Cross-reference with source data (Jira, Analytics)
L3
Logical consistency (progress can't exceed 100%)
L4
Human review for low-confidence insights
0.5% hallucination rate, 98% caught before user sees

Evaluation Framework

Risk Prediction Accuracy
92.3%target: 90%+
Insight Relevance (user rating)
4.2/5target: 4.0/5
Forecast Error (MAPE)
12.1%target: <15%
Recommendation Acceptance Rate
34%target: >30%
Testing: A/B testing with 10% holdout. Weekly evaluation on new data.

Dataset Curation

1
Collect: 50K historical OKRs - Export from pilot customers
2
Clean: 42K usable - Remove duplicates, incomplete records
3
Label: 10K labeled - ($$25K)
4
Augment: +5K synthetic - Edge case generation (at-risk scenarios)
β†’ 15K high-quality examples. Inter-annotator agreement: 0.89 (Cohen's Kappa)

Agentic RAG

Query Agent iteratively retrieves based on reasoning
Executive asks 'Why is Marketing OKR at risk?' β†’ RAG retrieves OKR data β†’ Agent reasons 'need dependency info' β†’ RAG retrieves blockers β†’ Agent reasons 'need team capacity' β†’ RAG retrieves utilization β†’ Insight generated with full context
πŸ’‘ Not one-shot retrieval. Agent decides what context it needs iteratively.

Model Drift Detection

Technology Stack

Frontend
Next.js 14, React, TypeScript, Tailwind CSS
Backend
Node.js, Python (ML services), FastAPI
Database
PostgreSQL (Aurora), Redis (ElastiCache)
LLMs
GPT-4 (OpenAI), Claude 3.5 Sonnet (Anthropic)
Orchestration
LangGraph, CrewAI (optional)
ML Platform
Feast (feature store), MLflow (registry), SageMaker (inference)
Message Queue
SQS (AWS), RabbitMQ (self-hosted option)
Compute
Serverless (Lambda/Cloud Run) or Kubernetes (EKS/GKE)
Monitoring
Datadog (metrics, logs, traces), Sentry (errors)
Security
Auth0 (SSO), AWS KMS (secrets), Presidio (PII detection)
CI/CD
GitHub Actions, Terraform (IaC)
πŸ—οΈ

Need Architecture Review for Your Strategic Planning System?

We'll audit your current setup, identify bottlenecks, and design a scalable architecture that grows from 10 to 10,000 users.