The difference between a struggling AI startup and a breakout success often comes down to one critical decision: the problem you choose to solve. Not every problem benefits from AI—some are better solved with simple automation, good UX, or traditional software.
123456789101112import openai import time def test_ai_feasibility(problem_description: str, sample_inputs: list[str]) -> dict: """ Quick feasibility test for AI-native problems. Tests if current AI can solve the problem with acceptable quality. """ client = openai.OpenAI() results = { 'success_rate': 0, 'avg_latency': 0,
123456789101112interface MarketSizeInputs { totalAddressableUsers: number; percentageWithProblem: number; percentageWillingToPay: number; averageMonthlyPrice: number; competitorMarketShare: number; } interface MarketSizeOutput { TAM: number; // Total Addressable Market SAM: number; // Serviceable Addressable Market SOM: number; // Serviceable Obtainable Market
123456789101112import json from dataclasses import dataclass from typing import Callable import openai @dataclass class TestCase: input: str expected_output: str category: str # e.g., 'simple', 'edge_case', 'adversarial' difficulty: int # 1-5