In the AI product landscape, algorithms are increasingly commoditized—the real differentiator is data. While competitors can replicate your model architecture or hire away your ML engineers, your proprietary data assets compound over time, creating an ever-widening competitive gap.
123456789101112import { z } from 'zod'; import { Analytics } from './analytics'; // Define strict schemas for all events const UserInteractionSchema = z.object({ eventType: z.enum(['click', 'view', 'scroll', 'submit']), userId: z.string().uuid(), sessionId: z.string().uuid(), timestamp: z.string().datetime(), elementId: z.string().min(1), pageUrl: z.string().url(), metadata: z.object({
123456789101112from dataclasses import dataclass from typing import List, Dict, Optional from datetime import datetime import statistics @dataclass class DataQualityMetrics: completeness: float # % of non-null values freshness_hours: float # hours since last update accuracy_score: float # validated against ground truth consistency_score: float # cross-field validation uniqueness_ratio: float # % unique records
123456789101112import openai from typing import List, Dict import json class SyntheticDataGenerator: def __init__(self, api_key: str, base_examples: List[Dict]): self.client = openai.OpenAI(api_key=api_key) self.base_examples = base_examples def generate_variations(self, template: Dict, num_variations: int = 10,
123456789101112from dataclasses import dataclass, field from typing import List, Dict, Optional from datetime import datetime import hashlib import json @dataclass class DataLineageRecord: record_id: str source_system: str source_timestamp: datetime transformations: List[Dict] = field(default_factory=list)