The Problem
On Monday you tested the 3 prompts in ChatGPT. You saw how detect toxic content → moderate with context → suggest engagement works. But here's the reality: you can't be online 24/7. You miss important conversations. Trolls post at 3am. Your best members get ignored because you're drowning in notifications.
See It Work
Watch the 3 prompts chain together automatically. This is what you'll build for your Discord/Slack community.
The Code
Three levels: start with Discord webhooks, add reliability, then scale to multi-platform. Pick where you are.
Level 1: Simple Discord Bot
Good for: 0-500 members | Setup time: 30 minutes
// Simple Discord Bot (0-500 members) import { Client, GatewayIntentBits, Message } from 'discord.js'; import Anthropic from '@anthropic-ai/sdk'; const discord = new Client({ intents: [ GatewayIntentBits.Guilds, GatewayIntentBits.GuildMessages, GatewayIntentBits.MessageContent, ], }); const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY!, }); interface ModerationResult { toxicity_score: number; action: 'none' | 'warn' | 'timeout' | 'ban'; reasoning: string; } async function moderateMessage(message: Message): Promise<ModerationResult> { // Step 1: Detect toxicity const detectionPrompt = `Analyze this Discord message for toxicity and violations. Message: "${message.content}" Author: ${message.author.username} Channel: ${message.channel.id} Return JSON with: - toxicity_score (0-1) - categories (array of violations) - severity (low/medium/high) - action_required (boolean)`; const detection = await anthropic.messages.create({ model: 'claude-3-5-sonnet-20241022', max_tokens: 1024, messages: [{ role: 'user', content: detectionPrompt }], }); const detectionContent = detection.content[0]; if (detectionContent.type !== 'text') throw new Error('Invalid response'); const toxicityData = JSON.parse(detectionContent.text); // Step 2: Decide moderation action if (toxicityData.toxicity_score < 0.5) { return { toxicity_score: toxicityData.toxicity_score, action: 'none', reasoning: 'Low toxicity' }; } const moderationPrompt = `Based on this toxicity analysis, recommend a moderation action. Data: ${JSON.stringify(toxicityData)} Return JSON with: - action (warn/timeout/ban) - reasoning (why this action) - dm_message (what to tell the user)`; const moderation = await anthropic.messages.create({ model: 'claude-3-5-sonnet-20241022', max_tokens: 1024, messages: [{ role: 'user', content: moderationPrompt }], }); const moderationContent = moderation.content[0]; if (moderationContent.type !== 'text') throw new Error('Invalid response'); const actionData = JSON.parse(moderationContent.text); // Execute action if (actionData.action === 'timeout') { await message.member?.timeout(7 * 24 * 60 * 60 * 1000, actionData.reasoning); // 7 days await message.author.send(actionData.dm_message); await message.delete(); } else if (actionData.action === 'ban') { await message.member?.ban({ reason: actionData.reasoning }); await message.delete(); } else if (actionData.action === 'warn') { await message.author.send(actionData.dm_message); } return { toxicity_score: toxicityData.toxicity_score, action: actionData.action, reasoning: actionData.reasoning, }; } // Step 3: Suggest engagement opportunities async function suggestEngagement(recentMessages: Message[]) { const messageTexts = recentMessages.map(m => `${m.author.username}: ${m.content}`).join('\n'); const engagementPrompt = `Analyze these community messages and suggest engagement opportunities. Recent messages: ${messageTexts} Return JSON with: - engagement_opportunities (array of {action, priority, reasoning, suggested_message}) - ambassador_candidates (array of usernames who are helpful)`; const response = await anthropic.messages.create({ model: 'claude-3-5-sonnet-20241022', max_tokens: 2048, messages: [{ role: 'user', content: engagementPrompt }], }); const content = response.content[0]; if (content.type !== 'text') throw new Error('Invalid response'); return JSON.parse(content.text); } // Listen for messages discord.on('messageCreate', async (message) => { if (message.author.bot) return; const result = await moderateMessage(message); console.log(`Moderated: ${message.author.username} | Action: ${result.action} | Score: ${result.toxicity_score}`); }); // Run engagement analysis every hour setInterval(async () => { const channel = discord.channels.cache.get('YOUR_CHANNEL_ID'); if (!channel?.isTextBased()) return; const messages = await channel.messages.fetch({ limit: 100 }); const suggestions = await suggestEngagement(Array.from(messages.values())); console.log('Engagement suggestions:', suggestions); // Send to your mod channel }, 60 * 60 * 1000); discord.login(process.env.DISCORD_TOKEN);
Level 2: Multi-Platform with Database
Good for: 500-5,000 members | Setup time: 2 hours
# Multi-Platform with Database (500-5000 members) import discord import asyncio from slack_sdk.web.async_client import AsyncWebClient from anthropic import AsyncAnthropic import psycopg2 from datetime import datetime, timedelta class CommunityModerator: def __init__(self): self.discord_client = discord.Client(intents=discord.Intents.all()) self.slack_client = AsyncWebClient(token=os.environ["SLACK_BOT_TOKEN"]) self.anthropic = AsyncAnthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) self.db = psycopg2.connect(os.environ["DATABASE_URL"]) async def detect_toxicity(self, message_text: str, platform: str, user_id: str) -> dict: """Step 1: Detect and classify toxicity""" # Get user history from database cursor = self.db.cursor() cursor.execute(""" SELECT COUNT(*) as total_messages, SUM(CASE WHEN warning = true THEN 1 ELSE 0 END) as warnings, AVG(helpfulness_score) as avg_helpfulness FROM messages WHERE user_id = %s AND platform = %s """, (user_id, platform)) history = cursor.fetchone() prompt = f"""Analyze this community message for toxicity. Message: "{message_text}" User history: {history[0]} messages, {history[1]} warnings, {history[2]:.2f} avg helpfulness Return JSON with: - toxicity_score (0-1) - categories (array) - severity (low/medium/high) - confidence (0-1) - action_required (boolean)""" response = await self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1024, messages=[{"role": "user", "content": prompt}] ) return json.loads(response.content[0].text) async def moderate_with_context(self, detection: dict, user_id: str, platform: str) -> dict: """Step 2: Recommend action with context""" if detection['toxicity_score'] < 0.5: return {'action': 'none', 'reasoning': 'Low toxicity'} prompt = f"""Recommend moderation action based on this analysis. Detection: {json.dumps(detection)} Return JSON with: - recommended_action (warn/timeout_1d/timeout_7d/ban) - reasoning (why) - dm_message (what to tell user) - escalate_to_human (boolean) - auto_execute (boolean)""" response = await self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1024, messages=[{"role": "user", "content": prompt}] ) action = json.loads(response.content[0].text) # Log to database cursor = self.db.cursor() cursor.execute(""" INSERT INTO moderation_actions (user_id, platform, action, reasoning, toxicity_score, timestamp) VALUES (%s, %s, %s, %s, %s, %s) """, (user_id, platform, action['recommended_action'], action['reasoning'], detection['toxicity_score'], datetime.now())) self.db.commit() return action async def suggest_engagement(self, platform: str, channel_id: str) -> dict: """Step 3: Analyze and suggest engagement opportunities""" # Get recent messages from database cursor = self.db.cursor() cursor.execute(""" SELECT user_id, username, message_text, helpfulness_score, timestamp FROM messages WHERE platform = %s AND channel_id = %s AND timestamp > %s ORDER BY timestamp DESC LIMIT 100 """, (platform, channel_id, datetime.now() - timedelta(days=7))) messages = cursor.fetchall() message_summary = "\n".join([f"{m[1]}: {m[2]}" for m in messages]) prompt = f"""Analyze these community messages and suggest engagement opportunities. Recent messages (last 7 days): {message_summary} Return JSON with: - engagement_opportunities (array of {{action, priority, reasoning, suggested_message}}) - ambassador_candidates (array of {{username, score, reason}}) - trending_topics (array of topics being discussed) - sentiment_trend (positive/neutral/negative)""" response = await self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=2048, messages=[{"role": "user", "content": prompt}] ) return json.loads(response.content[0].text) async def execute_action(self, action: dict, user_id: str, platform: str, message_id: str): """Execute moderation action across platforms""" if not action.get('auto_execute', False): # Send to human mod queue await self.send_to_mod_queue(action, user_id, platform, message_id) return if platform == 'discord': guild = self.discord_client.get_guild(int(os.environ['DISCORD_GUILD_ID'])) member = guild.get_member(int(user_id)) if action['recommended_action'] == 'timeout_7d': await member.timeout(timedelta(days=7), reason=action['reasoning']) elif action['recommended_action'] == 'ban': await member.ban(reason=action['reasoning']) # DM user await member.send(action['dm_message']) elif platform == 'slack': if action['recommended_action'] in ['timeout_7d', 'ban']: # Slack doesn't have timeout, so we restrict posting await self.slack_client.admin_users_session_invalidate( session_id=user_id ) # DM user await self.slack_client.chat_postMessage( channel=user_id, text=action['dm_message'] ) async def send_to_mod_queue(self, action: dict, user_id: str, platform: str, message_id: str): """Send to human moderator for review""" cursor = self.db.cursor() cursor.execute(""" INSERT INTO mod_queue (user_id, platform, message_id, recommended_action, reasoning, created_at) VALUES (%s, %s, %s, %s, %s, %s) """, (user_id, platform, message_id, action['recommended_action'], action['reasoning'], datetime.now())) self.db.commit() # Usage moderator = CommunityModerator() @moderator.discord_client.event async def on_message(message): if message.author.bot: return # Chain the 3 steps detection = await moderator.detect_toxicity( message.content, 'discord', str(message.author.id) ) if detection['action_required']: action = await moderator.moderate_with_context( detection, str(message.author.id), 'discord' ) await moderator.execute_action( action, str(message.author.id), 'discord', str(message.id) ) # Run engagement analysis every 6 hours async def engagement_loop(): while True: suggestions = await moderator.suggest_engagement('discord', 'YOUR_CHANNEL_ID') # Post to mod channel print('Engagement suggestions:', suggestions) await asyncio.sleep(6 * 60 * 60) asyncio.create_task(engagement_loop()) moderator.discord_client.run(os.environ['DISCORD_TOKEN'])
Level 3: Production with LangGraph Workflows
Good for: 5,000+ members | Setup time: 1 day
# Production with LangGraph (5000+ members) from langgraph.graph import Graph, END from typing import TypedDict, List, Literal import anthropic import redis import logging class CommunityState(TypedDict): message_id: str user_id: str platform: str message_text: str detection_result: dict moderation_action: dict engagement_suggestions: dict escalate: bool retry_count: int class ProductionModerator: def __init__(self): self.anthropic = anthropic.AsyncAnthropic() self.redis = redis.Redis(host='localhost', port=6379, decode_responses=True) self.logger = logging.getLogger('community_moderator') async def detect_node(self, state: CommunityState) -> CommunityState: """Node 1: Detect toxicity with caching""" # Check cache first cache_key = f"detection:{state['user_id']}:{hash(state['message_text'])}" cached = self.redis.get(cache_key) if cached: state['detection_result'] = json.loads(cached) return state # Get user context from Redis user_key = f"user:{state['platform']}:{state['user_id']}" user_data = self.redis.hgetall(user_key) prompt = f"""Analyze for toxicity with user context. Message: "{state['message_text']}" User stats: {json.dumps(user_data)} Return JSON with toxicity_score, categories, severity, confidence, action_required.""" response = await self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1024, messages=[{"role": "user", "content": prompt}] ) detection = json.loads(response.content[0].text) # Cache result for 1 hour self.redis.setex(cache_key, 3600, json.dumps(detection)) state['detection_result'] = detection return state async def moderate_node(self, state: CommunityState) -> CommunityState: """Node 2: Determine moderation action""" detection = state['detection_result'] # Low toxicity = skip moderation if detection['toxicity_score'] < 0.5: state['moderation_action'] = {'action': 'none'} return state # Get user's moderation history history_key = f"mod_history:{state['platform']}:{state['user_id']}" history = self.redis.lrange(history_key, 0, -1) prompt = f"""Recommend moderation action. Detection: {json.dumps(detection)} Previous actions: {json.dumps(history)} Return JSON with recommended_action, reasoning, dm_message, escalate_to_human, auto_execute.""" response = await self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1024, messages=[{"role": "user", "content": prompt}] ) action = json.loads(response.content[0].text) # Store in history self.redis.lpush(history_key, json.dumps({ 'action': action['recommended_action'], 'timestamp': datetime.now().isoformat(), 'toxicity_score': detection['toxicity_score'] })) self.redis.ltrim(history_key, 0, 49) # Keep last 50 state['moderation_action'] = action state['escalate'] = action.get('escalate_to_human', False) return state async def execute_node(self, state: CommunityState) -> CommunityState: """Node 3: Execute moderation action""" action = state['moderation_action'] if action['action'] == 'none': return state # Execute via platform-specific API if state['platform'] == 'discord': await self.execute_discord_action(state['user_id'], action) elif state['platform'] == 'slack': await self.execute_slack_action(state['user_id'], action) # Log action self.logger.info(f"Executed {action['action']} for {state['user_id']}") return state async def engagement_node(self, state: CommunityState) -> CommunityState: """Node 4: Analyze engagement opportunities""" # Get recent community activity from Redis activity_key = f"activity:{state['platform']}" recent_messages = self.redis.lrange(activity_key, 0, 99) prompt = f"""Analyze community activity and suggest engagement. Recent messages: {json.dumps(recent_messages)} Return JSON with engagement_opportunities, ambassador_candidates, trending_topics.""" response = await self.anthropic.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=2048, messages=[{"role": "user", "content": prompt}] ) state['engagement_suggestions'] = json.loads(response.content[0].text) return state def route_after_detection(self, state: CommunityState) -> Literal["moderate", "skip"]: """Route based on toxicity""" if state['detection_result']['action_required']: return "moderate" return "skip" def route_after_moderation(self, state: CommunityState) -> Literal["execute", "escalate"]: """Route based on escalation flag""" if state['escalate']: return "escalate" return "execute" async def execute_discord_action(self, user_id: str, action: dict): # Implementation for Discord API pass async def execute_slack_action(self, user_id: str, action: dict): # Implementation for Slack API pass # Build the graph def build_moderation_graph(): moderator = ProductionModerator() graph = Graph() # Add nodes graph.add_node("detect", moderator.detect_node) graph.add_node("moderate", moderator.moderate_node) graph.add_node("execute", moderator.execute_node) graph.add_node("engagement", moderator.engagement_node) graph.add_node("escalate", lambda s: s) # Human review queue # Add edges graph.set_entry_point("detect") graph.add_conditional_edges( "detect", moderator.route_after_detection, { "moderate": "moderate", "skip": "engagement" } ) graph.add_conditional_edges( "moderate", moderator.route_after_moderation, { "execute": "execute", "escalate": "escalate" } ) graph.add_edge("execute", "engagement") graph.add_edge("engagement", END) graph.add_edge("escalate", END) return graph.compile() # Usage moderation_graph = build_moderation_graph() initial_state = { "message_id": "msg_123", "user_id": "user_456", "platform": "discord", "message_text": "This community sucks!", "detection_result": {}, "moderation_action": {}, "engagement_suggestions": {}, "escalate": False, "retry_count": 0 } result = await moderation_graph.ainvoke(initial_state) print(f"Moderation complete: {result['moderation_action']['action']}") print(f"Engagement suggestions: {len(result['engagement_suggestions']['engagement_opportunities'])}")
When to Level Up
Start: Simple Bot
0-500 members
- Discord/Slack bot with basic moderation
- Sequential API calls (detect → moderate → engage)
- Manual review for edge cases
- Simple logging with console.log
Scale: Multi-Platform + Database
500-5,000 members
- Support Discord + Slack + Discourse
- PostgreSQL for user history and moderation logs
- Automatic action execution with human escalation
- Scheduled engagement analysis (every 6 hours)
- Ambassador candidate identification
Production: LangGraph Orchestration
5,000-20,000 members
- LangGraph workflows with conditional routing
- Redis caching for user context and detection results
- Real-time moderation with <2s latency
- Human-in-the-loop for high-severity cases
- Engagement suggestions posted to mod dashboard
Enterprise: Multi-Agent System
20,000+ members
- Specialized agents (toxicity, engagement, ambassadors, sentiment)
- Multi-region deployment with load balancing
- Real-time dashboard (Grafana + Prometheus)
- A/B testing moderation strategies
- ML model fine-tuning on community-specific data
- Integration with CRM for ambassador programs
Growth-Specific Gotchas
The code examples work. But community management has unique challenges you need to handle.
Context Collapse Across Platforms
Same user behaves differently on Discord vs Slack vs Twitter. Track identity across platforms to maintain consistent moderation. Use a unified user ID system.
# Unified user identity across platforms class UnifiedUser: def __init__(self, user_id: str): self.user_id = user_id self.identities = {} def add_platform_identity(self, platform: str, platform_user_id: str): """Link platform-specific IDs to unified user""" self.identities[platform] = platform_user_id # Store in Redis redis.hset(f"user:{self.user_id}", platform, platform_user_id) redis.hset(f"platform:{platform}:{platform_user_id}", "unified_id", self.user_id) def get_cross_platform_history(self) -> dict: """Get moderation history across all platforms""" history = {} for platform, platform_id in self.identities.items(): history[platform] = redis.lrange(f"mod_history:{platform}:{platform_id}", 0, -1) return history # Usage: Moderate based on cross-platform behavior user = UnifiedUser("unified_user_123") user.add_platform_identity("discord", "discord_456") user.add_platform_identity("slack", "slack_789") # When moderating, check ALL platforms cross_platform_history = user.get_cross_platform_history() if len(cross_platform_history['discord']) + len(cross_platform_history['slack']) > 5: # User has 5+ violations across platforms = stricter action action = "ban" else: action = "warn"
Timezone-Aware Moderation
Toxic messages at 3am your time might be 3pm for users in other timezones. Don't assume malice when it's just cultural differences in online hours. Track user timezone and adjust moderation sensitivity.
// Timezone-aware moderation sensitivity import { DateTime } from 'luxon'; interface UserTimezone { userId: string; timezone: string; localHour: number; } async function adjustModerationForTimezone( toxicityScore: number, userId: string ): Promise<number> { // Get user's timezone (inferred from past activity or profile) const userTz = await redis.get(`user:${userId}:timezone`) || 'UTC'; const userLocalTime = DateTime.now().setZone(userTz); const localHour = userLocalTime.hour; // Late night (11pm-5am local) = higher tolerance // People are tired, less filtered if (localHour >= 23 || localHour <= 5) { toxicityScore *= 0.8; // 20% more lenient } // Work hours (9am-5pm local) = stricter // Professional context expected if (localHour >= 9 && localHour <= 17) { toxicityScore *= 1.2; // 20% stricter } return toxicityScore; } // Usage in moderation pipeline let toxicityScore = 0.75; toxicityScore = await adjustModerationForTimezone(toxicityScore, userId); if (toxicityScore > 0.8) { // Take action }
False Positives on Technical Jargon
Tech communities use words that look toxic to generic models. 'kill the process', 'master/slave architecture', 'execute the script' trigger false positives. Maintain a whitelist of technical terms.
# Whitelist technical jargon to avoid false positives TECH_JARGON_WHITELIST = [ r'kill (the )?process', r'master[/-]slave', r'execute (the )?script', r'parent[/-]child', r'blacklist|whitelist', r'abort', r'terminate', r'force (push|quit)', r'nuke', r'blow away', ] def is_technical_context(message: str) -> bool: """Check if message contains technical jargon""" import re for pattern in TECH_JARGON_WHITELIST: if re.search(pattern, message, re.IGNORECASE): return True return False def adjust_for_technical_context(toxicity_score: float, message: str) -> float: """Lower toxicity score if technical jargon detected""" if is_technical_context(message): # Check if message also contains code blocks if '```' in message or '`' in message: return toxicity_score * 0.5 # 50% less sensitive return toxicity_score # Usage raw_score = 0.82 # "kill the process" flagged as toxic adjusted_score = adjust_for_technical_context(raw_score, message_text) print(f"Adjusted: {adjusted_score}") # 0.41 - no longer flagged
Ambassador Burnout Detection
Your best community members can burn out from over-helping. Monitor response rates, sentiment changes, and message frequency. Alert when ambassadors show burnout signs.
// Detect ambassador burnout patterns interface AmbassadorMetrics { userId: string; weeklyMessages: number[]; weeklyHelpfulResponses: number[]; weeklySentiment: number[]; } async function detectBurnout(userId: string): Promise<boolean> { // Get last 8 weeks of activity const metrics = await getAmbassadorMetrics(userId, 8); // Burnout indicators: // 1. Declining message volume (>30% drop) const recentAvg = average(metrics.weeklyMessages.slice(-4)); const earlierAvg = average(metrics.weeklyMessages.slice(0, 4)); const volumeDecline = (earlierAvg - recentAvg) / earlierAvg; // 2. Declining helpfulness (>40% drop in helpful responses) const recentHelpful = average(metrics.weeklyHelpfulResponses.slice(-4)); const earlierHelpful = average(metrics.weeklyHelpfulResponses.slice(0, 4)); const helpfulnessDecline = (earlierHelpful - recentHelpful) / earlierHelpful; // 3. Declining sentiment (more negative) const recentSentiment = average(metrics.weeklySentiment.slice(-4)); const earlierSentiment = average(metrics.weeklySentiment.slice(0, 4)); const sentimentDecline = earlierSentiment - recentSentiment; // Burnout if 2+ indicators triggered const indicators = [ volumeDecline > 0.3, helpfulnessDecline > 0.4, sentimentDecline > 0.2, ]; const burnoutScore = indicators.filter(Boolean).length; if (burnoutScore >= 2) { // Alert community manager await sendBurnoutAlert(userId, { volumeDecline, helpfulnessDecline, sentimentDecline, }); return true; } return false; } // Run weekly check on all ambassadors setInterval(async () => { const ambassadors = await getAmbassadorList(); for (const ambassador of ambassadors) { await detectBurnout(ambassador.userId); } }, 7 * 24 * 60 * 60 * 1000); // Weekly
Viral Thread Detection & Amplification
Some threads go viral organically. Detect high-engagement threads early and amplify them (pin, cross-post, notify). Don't let great conversations get buried.
# Detect and amplify viral threads import asyncio from datetime import datetime, timedelta class ViralThreadDetector: def __init__(self): self.engagement_threshold = { 'replies_per_hour': 10, 'reactions_per_hour': 30, 'unique_participants': 5, 'sentiment_score': 0.6 # Positive sentiment } async def analyze_thread(self, thread_id: str, platform: str) -> dict: """Analyze thread engagement metrics""" # Get thread messages from last 2 hours messages = await get_thread_messages(thread_id, hours=2) metrics = { 'replies_per_hour': len(messages) / 2, 'reactions_per_hour': sum(m['reaction_count'] for m in messages) / 2, 'unique_participants': len(set(m['user_id'] for m in messages)), 'sentiment_score': await calculate_sentiment(messages) } return metrics async def should_amplify(self, thread_id: str, platform: str) -> bool: """Check if thread meets viral criteria""" metrics = await self.analyze_thread(thread_id, platform) # Check all thresholds viral = all([ metrics['replies_per_hour'] >= self.engagement_threshold['replies_per_hour'], metrics['reactions_per_hour'] >= self.engagement_threshold['reactions_per_hour'], metrics['unique_participants'] >= self.engagement_threshold['unique_participants'], metrics['sentiment_score'] >= self.engagement_threshold['sentiment_score'] ]) return viral async def amplify_thread(self, thread_id: str, platform: str): """Amplify viral thread across channels""" if platform == 'discord': # Pin the thread await pin_discord_message(thread_id) # Cross-post to announcements await cross_post_to_channel(thread_id, 'announcements') elif platform == 'slack': # Add to channel topic await update_slack_topic(thread_id) # Send to #highlights channel await cross_post_to_channel(thread_id, 'highlights') # Notify community manager await notify_manager(f"Viral thread detected: {thread_id}") # Log amplification redis.sadd('amplified_threads', thread_id) # Run every 30 minutes detector = ViralThreadDetector() async def check_viral_threads(): while True: # Get active threads from last 2 hours active_threads = await get_active_threads(hours=2) for thread in active_threads: # Skip if already amplified if redis.sismember('amplified_threads', thread['id']): continue if await detector.should_amplify(thread['id'], thread['platform']): await detector.amplify_thread(thread['id'], thread['platform']) await asyncio.sleep(30 * 60) # 30 minutes asyncio.create_task(check_viral_threads())
Cost Calculator
Manual Community Management
Limitations:
- • Can only scale to ~500 active members per manager
- • No coverage during nights/weekends without extra cost
- • Human moderators have bias and inconsistency
- • Slow response time (hours, not minutes)
- • Can't analyze engagement patterns at scale
Automated Community Platform
Benefits:
- ✓ Scale to 10,000+ members with same infrastructure
- ✓ 24/7 coverage with <2 second response time
- ✓ Consistent moderation policy application
- ✓ Proactive engagement suggestions
- ✓ Ambassador burnout detection
- ✓ Cross-platform identity tracking
- ✓ Viral thread amplification