โ† Wednesday's Workflows

Dynamic Pricing System Architecture ๐Ÿ—๏ธ

From 10 SKUs to 10,000: Real-time competitor monitoring, ML optimization, and revenue analytics

September 11, 2025
๐Ÿ’ฐ Strategy๐Ÿ—๏ธ Architecture๐Ÿค– AI-Powered๐Ÿ“Š Real-Time

From manual spreadsheets to autonomous pricing intelligence.

Monday: 3 pricing prompts (monitor, optimize, test). Tuesday: automation code. Wednesday: team workflows. Thursday: complete technical architecture. Four specialized agents, real-time competitor data, ML optimization engine, and A/B testing platform that scales from 10 to 10,000 SKUs.

Key Assumptions

  • โ€ขMonitor 10-1000 competitor products (hourly scrapes for critical SKUs)
  • โ€ขOptimize pricing for 10-10,000 SKUs (daily batch + real-time overrides)
  • โ€ขRun 5-50 concurrent A/B tests (statistical significance in 3-7 days)
  • โ€ขIntegrate with Stripe/payment gateway for revenue tracking
  • โ€ขGDPR/SOC2 compliance for customer data and pricing algorithms
  • โ€ขMulti-currency support (USD, EUR, GBP + 10 others)
  • โ€ขAPI-first: headless pricing engine for web/mobile/POS

System Requirements

Functional

  • Real-time competitor price monitoring (scraping + API integrations)
  • ML-driven price optimization (demand forecasting, elasticity modeling)
  • A/B testing platform (statistical significance, revenue attribution)
  • Dynamic pricing rules engine (time-based, inventory-based, segment-based)
  • Revenue analytics dashboard (lift analysis, margin tracking)
  • Multi-channel pricing (web, mobile, B2B portals, marketplace sync)
  • Audit trail (every price change logged with reasoning)

Non-Functional (SLOs)

latency p95 ms100
freshness competitor data min60
availability percent99.9
ml inference latency ms50
ab test decision latency ms20

๐Ÿ’ฐ Cost Targets: {"per_sku_per_month_usd":0.5,"per_competitor_scrape_usd":0.02,"ml_inference_per_1k_usd":0.1}

Agent Layer

planner

L4

Orchestrates pricing workflow: monitor โ†’ optimize โ†’ test โ†’ apply

๐Ÿ”ง Monitor Agent, Optimizer Agent, Test Manager Agent, Evaluator Agent

โšก Recovery: If Monitor fails: use cached competitor data (max 24h old), If Optimizer fails: fallback to rule-based pricing, If Test Manager fails: apply price without A/B test

monitor

L2

Scrapes competitor prices, validates data quality

๐Ÿ”ง Scraper Pool API, Price Intelligence API, Data Validator

โšก Recovery: If scrape fails: retry 3x with backoff, If all fail: use Price Intelligence API, If both fail: use last known prices (flagged as stale)

optimizer

L3

ML-driven price recommendations with elasticity modeling

๐Ÿ”ง ML Inference Engine, Feature Store, Revenue Simulator

โšก Recovery: If ML inference fails: use rule-based optimization (margin + competitor avg), If confidence < 0.6: flag for human review, If elasticity model unavailable: use historical avg

test_manager

L3

A/B test orchestration, statistical analysis, winner selection

๐Ÿ”ง Statistical Engine, Revenue Tracker, Test Config DB

โšก Recovery: If test fails to reach significance: extend duration or stop, If revenue tracking fails: pause test, investigate, If variant severely underperforms: early stop (safety)

evaluator

L2

Quality checks: price sanity, margin validation, compliance

๐Ÿ”ง Margin Calculator, Policy Engine, Anomaly Detector

โšก Recovery: If margin too low: reject, suggest min price, If price anomaly detected: flag for review, If policy violation: block and alert

guardrail

L2

Safety filters: prevent price gouging, protect margins, enforce limits

๐Ÿ”ง Price Bounds Checker, Market Context Analyzer, Compliance Rules

โšก Recovery: If price > 2x competitor avg: cap at 1.5x, If margin < 10%: raise to min margin, If price change > 20%: require approval

ML Layer

Feature Store

Update: Hourly for real-time features, daily for batch features

  • โ€ข competitor_price_avg_7d
  • โ€ข competitor_price_min_max
  • โ€ข historical_demand_30d
  • โ€ข price_elasticity_coefficient
  • โ€ข inventory_level
  • โ€ข seasonality_factor
  • โ€ข customer_segment_willingness_to_pay
  • โ€ข conversion_rate_at_price_point
  • โ€ข margin_percent
  • โ€ข days_since_last_price_change

Model Registry

Strategy: Semantic versioning with A/B testing for new versions

  • โ€ข demand_forecaster
  • โ€ข elasticity_estimator
  • โ€ข price_optimizer

Observability

Metrics

  • ๐Ÿ“Š scrape_success_rate
  • ๐Ÿ“Š scrape_latency_p95_ms
  • ๐Ÿ“Š ml_inference_latency_ms
  • ๐Ÿ“Š price_recommendation_confidence_avg
  • ๐Ÿ“Š ab_test_decision_latency_ms
  • ๐Ÿ“Š api_latency_p95_ms
  • ๐Ÿ“Š revenue_lift_percent
  • ๐Ÿ“Š margin_realization_percent
  • ๐Ÿ“Š guardrail_trigger_rate
  • ๐Ÿ“Š policy_violation_count

Dashboards

  • ๐Ÿ“ˆ ops_dashboard
  • ๐Ÿ“ˆ ml_dashboard
  • ๐Ÿ“ˆ revenue_dashboard
  • ๐Ÿ“ˆ ab_test_dashboard

Traces

โœ… Enabled

Deployment Variants

๐Ÿš€ Startup

Infrastructure:

  • โ€ข Single-region deployment (AWS us-east-1 or GCP us-central1)
  • โ€ข Managed services: RDS PostgreSQL, ElastiCache Redis, Lambda/Cloud Run
  • โ€ข Serverless scraping (AWS Fargate spot instances)
  • โ€ข ML inference: SageMaker serverless or Vertex AI
  • โ€ข Monitoring: CloudWatch + Grafana Cloud (free tier)

โ†’ Cost-optimized: ~$500/mo for 1K SKUs

โ†’ Quick to deploy: 2-3 weeks

โ†’ Manual oversight for edge cases

โ†’ No multi-tenancy (single customer)

๐Ÿข Enterprise

Infrastructure:

  • โ€ข Multi-region deployment (US + EU + APAC)
  • โ€ข Kubernetes (EKS/GKE) with autoscaling
  • โ€ข Private VPC with VPN/Direct Connect
  • โ€ข Multi-tenant architecture (customer isolation)
  • โ€ข BYO KMS for encryption keys
  • โ€ข SSO/SAML integration (Okta/Azure AD)
  • โ€ข Dedicated ML infrastructure (GPU instances)
  • โ€ข Data residency controls (per-customer region)

โ†’ Cost: $8K+/mo for 10K+ SKUs

โ†’ SLA: 99.99% uptime

โ†’ Full audit trail + compliance reports

โ†’ 24/7 support + dedicated success manager

๐Ÿ“ˆ Migration: Start with startup variant. Migrate to enterprise when: (1) >5K SKUs, (2) Multi-region required, (3) Enterprise customers demand SSO/audit, (4) Revenue >$10M/yr. Migration path: (a) Deploy K8s cluster, (b) Migrate DB to multi-region setup, (c) Add SSO integration, (d) Implement multi-tenancy, (e) Cutover with blue-green deployment.

Risks & Mitigations

โš ๏ธ Competitor scraping blocked (rate limits, legal)

High

โœ“ Mitigation: Multi-layered: (1) Rotate proxies, (2) Use Price Intelligence API as backup, (3) Cache data for 24h, (4) Legal review of scraping ToS, (5) Consider partnerships with data providers.

โš ๏ธ ML model drift (market conditions change)

Medium

โœ“ Mitigation: Weekly drift detection (KL divergence on features), auto-retrain if drift >0.1, A/B test new models before rollout, human review for large price changes.

โš ๏ธ Price wars (competitors aggressively undercut)

Medium

โœ“ Mitigation: Guardrail Agent enforces min margin (10%), alerts if competitor prices drop >20%, human approval for defensive pricing, consider non-price differentiation.

โš ๏ธ A/B tests fail to reach significance (low traffic)

Medium

โœ“ Mitigation: Pre-test power analysis (sample size calculator), use multi-armed bandit for faster convergence, extend test duration or increase traffic allocation.

โš ๏ธ Pricing algorithm bias (discriminatory pricing)

Low

โœ“ Mitigation: Guardrail Agent blocks segment-based pricing, audit trail for all price changes, regular bias audits (quarterly), legal review of pricing policies.

โš ๏ธ Data breach (competitor data, revenue metrics)

Low

โœ“ Mitigation: Encryption at rest (KMS), encryption in transit (TLS 1.3), RBAC (least privilege), audit logs (immutable), SOC2 compliance, regular pen testing.

โš ๏ธ System outage during peak sales (Black Friday)

Low

โœ“ Mitigation: Multi-region deployment, auto-scaling, cache layer (Redis), fallback to static prices, load testing (10x expected traffic), 24/7 on-call during peak.

Evolution Roadmap

1

Phase 1: MVP (0-3 months)

Weeks 1-12
  • โ†’ Launch basic competitor monitoring (100 SKUs)
  • โ†’ Rule-based pricing (margin + competitor avg)
  • โ†’ Manual A/B testing (5 tests)
  • โ†’ Basic analytics dashboard
2

Phase 2: ML-Powered (3-6 months)

Months 4-6
  • โ†’ Deploy ML demand forecasting (1K SKUs)
  • โ†’ Automated A/B testing (20 concurrent tests)
  • โ†’ Real-time pricing API (<100ms)
  • โ†’ Advanced analytics (revenue lift, elasticity)
3

Phase 3: Enterprise Scale (6-12 months)

Months 7-12
  • โ†’ Scale to 10K+ SKUs
  • โ†’ Multi-region deployment (US + EU)
  • โ†’ Multi-tenant architecture
  • โ†’ 99.99% uptime SLA
  • โ†’ SOC2 compliance

Complete Systems Architecture

9-layer architecture: Presentation โ†’ Agents โ†’ ML โ†’ Data

Presentation
Admin Dashboard (React)
Analytics UI (Grafana)
Pricing API (REST + GraphQL)
API Gateway
Load Balancer (ALB/CloudFlare)
Rate Limiter (Redis)
Auth Gateway (OIDC/JWT)
API Versioning
Agent Layer
Planner Agent (orchestrates workflow)
Monitor Agent (competitor scraping)
Optimizer Agent (ML price recommendations)
Test Manager Agent (A/B test decisions)
Evaluator Agent (quality checks)
Guardrail Agent (policy enforcement)
ML Layer
Feature Store (pricing signals)
Model Registry (demand forecasting, elasticity)
Inference Engine (real-time predictions)
Evaluation Pipeline (offline metrics)
Integration
Stripe Adapter (revenue tracking)
Scraper Pool (competitor data)
Price Intelligence API (Prisync/Competera)
Analytics Connector (Segment/Mixpanel)
Data
PostgreSQL (pricing history, audit)
Redis (cache, rate limiting)
S3/GCS (raw scrapes, ML datasets)
TimescaleDB (time-series analytics)
External
Competitor Websites (scraping targets)
Payment Gateway (Stripe API)
Price Intelligence SaaS
LLM APIs (GPT/Claude for analysis)
Observability
Metrics (Prometheus/Datadog)
Logs (CloudWatch/Loki)
Traces (Jaeger/Tempo)
Dashboards (Grafana)
ML Eval Dashboard
Security
IAM/RBAC (pricing admin roles)
KMS (secrets, API keys)
Audit Log (compliance trail)
WAF (scraper protection)
PII Redaction

Sequence Diagram - Price Optimization Request

AdminAPI GatewayPlanner AgentMonitor AgentOptimizer AgentML EngineTest ManagerDatabasePOST /optimize?sku=ABC123orchestrate(sku)getCompetitorPrices(sku)query recent scrapesreturn competitor_prices[]recommend(sku, competitor_prices)predict_demand(sku, price_range)elasticity_curve, optimal_pricerecommended_price=$49.99, lift=+18%shouldABTest(sku, new_price)check active testsyes, split 50/50, duration=7dsave test config + audit log200 OK: test_id=T123, estimated_lift=+18%

Dynamic Pricing System - Hub Orchestration

7 Components
[RPC]Trigger scraping[Event]Market data[RPC]Optimize prices[REST]Price recommendations[RPC]Validate prices[REST]Quality results[RPC]Safety check[REST]Approved/Rejected[RPC]Deploy A/B test[Event]Test results[Event]Applied prices[REST]Performance feedbackPlanner Agent4 capabilitiesMonitor Agent4 capabilitiesOptimizer Agent4 capabilitiesTest Manager Agent4 capabilitiesEvaluator Agent4 capabilitiesGuardrail Agent4 capabilitiesRevenue Analytics4 capabilities
HTTP
REST
gRPC
Event
Stream
WebSocket

Dynamic Pricing System - Feedback Loops & Optimization

7 Components
[Stream]Real-time market data[REST]Price candidates[Feedback]Constraint violations[REST]Validated prices[Feedback]Safety rejections[Event]Approved variants[Stream]Experiment metrics[Feedback]Early stopping signals[Feedback]Performance feedback[Event]Retraining triggers[REST]Updated models[Stream]Feature updates[Feedback]Test learningsMonitor Agent4 capabilitiesOptimizer Agent4 capabilitiesEvaluator Agent4 capabilitiesGuardrail Agent4 capabilitiesTest Manager Agent4 capabilitiesRevenue Analytics4 capabilitiesML Model Store4 capabilities
HTTP
REST
gRPC
Event
Stream
WebSocket

Data Flow - Price Optimization Cycle

Hourly monitoring โ†’ Daily optimization โ†’ Continuous A/B testing

1
Scheduler0s
Triggers hourly scrape job โ†’ Cron event
2
Monitor Agent3-5 min (parallel)
Scrapes 1000 competitor products โ†’ HTML pages โ†’ Structured prices
3
Data Validator30s
Checks price sanity, outliers โ†’ Validated competitor_prices[]
4
Database10s
Stores competitor prices with timestamp โ†’ CompetitorPrice records
5
Planner Agent5s
Identifies products needing re-pricing โ†’ sku_list (price gap > 10%)
6
Optimizer Agent50ms per SKU
Generates price recommendations โ†’ PriceRecommendation records
7
ML Engine30-50ms per SKU
Predicts demand at new price points โ†’ Elasticity curves, optimal prices
8
Evaluator Agent5ms per SKU
Validates margin, policy compliance โ†’ Approved recommendations
9
Test Manager Agent20ms per test
Creates A/B test configs โ†’ ABTest records (control vs variant)
10
Pricing API<100ms
Serves prices based on test assignment โ†’ Real-time price for checkout
11
Revenue TrackerReal-time stream
Logs conversions, revenue per variant โ†’ ABTestResult metrics
12
Test Manager Agent5 min per test
Analyzes test results (daily) โ†’ Winner selection, p-value
13
Planner Agent1s
Applies winning price to production โ†’ PriceHistory record + audit log

Scaling Patterns

Volume
10-100 SKUs, 10 competitors
Pattern
Simple Scheduled Jobs
Architecture
โ€ข Single API server (Node.js/Python)
โ€ข PostgreSQL database
โ€ข Cron jobs for scraping
โ€ข Rule-based pricing (no ML)
Cost
$100/mo
5-10 sec
Volume
100-1,000 SKUs, 50 competitors
Pattern
Queue + Workers
Architecture
โ€ข API server + worker pool
โ€ข Message queue (Redis/SQS)
โ€ข PostgreSQL + Redis cache
โ€ข Basic ML (XGBoost on CPU)
Cost
$500/mo
1-3 sec
Volume
1,000-10,000 SKUs, 200 competitors
Pattern
Multi-Agent + ML Pipeline
Architecture
โ€ข Load balanced agents (K8s/ECS)
โ€ข Message bus (Kafka/RabbitMQ)
โ€ข ML inference (TensorFlow Serving)
โ€ข TimescaleDB for analytics
โ€ข Redis for real-time features
Cost
$2,000/mo
100-500ms
Volume
10,000+ SKUs, 1000+ competitors
Pattern
Enterprise Multi-Region
Architecture
โ€ข Kubernetes multi-cluster
โ€ข Event streaming (Kafka)
โ€ข Distributed ML (Ray/Spark)
โ€ข Multi-region DB replication
โ€ข CDN for pricing API
Cost
$8,000+/mo
50-100ms

Key Integrations

Stripe Payment Gateway

Protocol: REST API + Webhooks
Pricing API returns price to checkout
Customer completes purchase via Stripe
Stripe webhook โ†’ Revenue Tracker
Revenue attributed to A/B test variant

Competitor Scraping

Protocol: HTTP scraping (Scrapy/Playwright) + APIs
Monitor Agent triggers scrape job
Parallel workers scrape 1000 URLs
HTML parsing โ†’ Structured price data
Validation โ†’ Database storage

Price Intelligence SaaS (Prisync/Competera)

Protocol: REST API
Fallback when scraping fails
Query competitor prices via API
Merge with scraped data
Cache for 1 hour

Analytics Platform (Segment/Mixpanel)

Protocol: Event streaming
Price change event โ†’ Analytics
A/B test assignment โ†’ Analytics
Revenue event โ†’ Analytics
Dashboard visualization

Security & Compliance

Failure Modes & Fallbacks

FailureFallbackImpactSLA
Competitor scraping fails (rate limit, site down)Use Price Intelligence API as backup, then cached data (max 24h old)Degraded freshness, not broken99.5% scrape success rate
ML inference timeout or model errorFallback to rule-based pricing (margin + competitor avg)Lower revenue lift (10% vs 20%), quality maintained99.9% inference availability
A/B test fails to reach significanceExtend test duration or stop test and revert to controlDelayed rollout, no revenue loss80% tests reach significance in 7 days
Database unavailable (outage)Read from replica (eventual consistency), cache layer serves stale pricesRead-only mode, no new price changes99.99% DB availability (RDS Multi-AZ)
Pricing API latency spike (>500ms)Serve cached prices, bypass ML inferenceStale prices (max 1 hour), fast responsep95 latency <100ms
Guardrail agent detects price gouging (price >2x competitor avg)Block price change, alert pricing admin, require manual approvalSafety first, prevents brand damage100% guardrail enforcement
Revenue tracking fails (Stripe webhook missed)Batch reconciliation (hourly), query Stripe API for missing eventsDelayed revenue attribution, eventual consistency99.9% webhook delivery

Advanced ML/AI Patterns

Production ML engineering for pricing optimization

RAG vs Fine-Tuning for Competitor Analysis

Competitor pricing changes daily. RAG allows real-time updates without retraining. Fine-tuning would require weekly retraining ($5K/mo cost).
โœ… RAG (Chosen)
Cost: $200/mo (vector DB + embeddings)
Update: Hourly (new scrapes โ†’ vector DB)
How:
โŒ Fine-Tuning
Cost: $5K/mo (GPU training)
Update: Weekly (batch retraining)
How:
Implementation: Vector DB (Pinecone/Weaviate) with competitor price history embeddings. Retrieved during optimization for market context. LLM (GPT-4) generates reasoning: 'Recommend $49.99 because competitor A is at $52, B at $47, and demand is high.'

Hallucination Detection in Price Reasoning

LLMs hallucinate competitor prices or market trends
L1
Confidence scores: LLM outputs confidence <0.7 โ†’ flag for review
L2
Cross-reference: Check LLM-generated prices against actual scraped data
L3
Logical consistency: Detect contradictions (e.g., 'price too high' but recommending increase)
L4
Human review queue: All flagged recommendations reviewed by pricing analyst
0.5% hallucination rate, 100% caught before production

Evaluation Framework

Price Prediction MAE
$1.20target: <$2.00
Revenue Lift Accuracy
ยฑ3.2%target: ยฑ5% of predicted
Demand Forecast RMSE
12.8%target: <15%
Test Significance Rate
87%target: >80%
Model Drift Score
0.06target: <0.1 (weekly)
Testing: Shadow mode: Run ML recommendations in parallel with rule-based for 1000 SKUs over 30 days. Compare revenue lift. Winner: ML (+18% vs +8%).

Dataset Curation

1
Collect: 2 years of pricing history (50K SKU-days) - Internal data + competitor scrapes
2
Clean: 45K usable (remove outliers, errors) - Outlier detection (IQR), missing value imputation
3
Label: 45K labeled with actual revenue outcomes - ($$0 (internal data))
4
Augment: +5K synthetic (edge cases) - Generate scenarios: price wars, stockouts, holidays
โ†’ 50K high-quality examples. Train/val/test: 70/15/15. Elasticity model Rยฒ: 0.89.

Agentic RAG for Market Context

Optimizer Agent iteratively retrieves based on reasoning
Agent sees competitor price drop โ†’ RAG retrieves historical price wars โ†’ Agent reasons 'need to match or lose market share' โ†’ RAG retrieves elasticity at lower price โ†’ Agent recommends $45 (vs $50 baseline) with 'defensive pricing' reasoning.
๐Ÿ’ก Not one-shot retrieval. Agent decides what context it needs (price history, elasticity, seasonality) and retrieves iteratively.

Multi-Armed Bandit for Dynamic A/B Testing

Tech Stack Summary

Backend
Node.js (API) + Python (ML/agents)
Agents
LangGraph or CrewAI
LLMs
GPT-4 (reasoning), Claude (analysis), DeepSeek (cost-effective)
ML
XGBoost (demand forecasting), TensorFlow (elasticity), Scikit-learn (stats)
Database
PostgreSQL (pricing history), TimescaleDB (analytics), Redis (cache)
Queue
Redis (startup), Kafka (enterprise)
Scraping
Scrapy + Playwright + Proxy Pool
Compute
Kubernetes (EKS/GKE) or Serverless (Lambda/Cloud Run)
Monitoring
Prometheus + Grafana + Datadog
Security
AWS KMS, WAF, OIDC/SAML
๐Ÿ’ฐ

Ready to optimize your pricing strategy?

We'll architect a custom pricing system for your business: competitor monitoring, ML optimization, and revenue analytics.