Skip to main content
← Wednesday's Workflows

Market Reports System Architecture πŸ—οΈ

From 100 to 100K reports/day with AI agents and SOC2 compliance

April 24, 2025
21 min read
πŸ’° FinanceπŸ—οΈ ArchitectureπŸ€– AI AgentsπŸ“Š ScalableπŸ”’ SOC2
🎯This Week's Journey

From prompts to production-grade market intelligence.

Monday: 3 core prompts for market analysis. Tuesday: automated report generation code. Wednesday: team workflows across analysts, engineers, and compliance. Thursday: complete technical architecture. Today we show you the full system design: data ingestion, AI agent orchestration, ML pipelines, and enterprise-grade compliance. Scale from 100 reports/day to 100K with SOC2 certification.

πŸ“‹

Key Assumptions

1
Generate 100-100K reports/day across equity, forex, commodity markets
2
Ingest data from 5-10 market data providers (Bloomberg, Reuters, Alpha Vantage)
3
Comply with SOC2, FINRA audit requirements, data retention policies
4
Support both real-time (sub-5min) and scheduled (daily/weekly) reports
5
Multi-tenant SaaS for enterprise clients with data isolation

System Requirements

Functional

  • Ingest real-time market data from APIs (prices, volumes, news, sentiment)
  • Extract insights using AI agents (trend detection, anomaly alerts, summaries)
  • Generate reports in multiple formats (PDF, Excel, interactive dashboards)
  • Version control for prompts, models, and report templates
  • Audit trail for all data access and report generation
  • Role-based access control (analysts, clients, admins)
  • Scheduled and on-demand report generation

Non-Functional (SLOs)

latency p95 ms3000
freshness min5
availability percent99.9
report generation time p95 sec30
data ingestion lag p95 sec60

πŸ’° Cost Targets: {"per_report_usd":0.15,"per_user_monthly_usd":50,"data_ingestion_per_1k_records_usd":0.05}

Agent Layer

planner

L3

Decomposes report request into tasks, selects tools and data sources

πŸ”§ market_data_selector, template_matcher, compliance_checker

⚑ Recovery: If data source unavailable β†’ select backup source, If template missing β†’ use default template, Log all failures to audit trail

executor

L4

Executes analysis workflow, calls ML models, generates insights

πŸ”§ feature_extractor, ml_inference_service, insight_generator (LLM), chart_generator

⚑ Recovery: If ML model fails β†’ use rule-based fallback, If LLM timeout β†’ retry 3x with backoff, If partial data β†’ flag as incomplete, proceed with available

evaluator

L3

Validates output quality, checks for hallucinations, ensures compliance

πŸ”§ fact_checker, confidence_scorer, compliance_validator, hallucination_detector

⚑ Recovery: If quality < 0.7 β†’ flag for human review, If compliance violation β†’ block report, alert admin, If hallucination detected β†’ regenerate with stricter prompts

guardrail

L2

Enforces policies, redacts PII, applies safety filters, rate limits

πŸ”§ pii_detector, content_filter, rate_limiter, access_control_checker

⚑ Recovery: If PII detected β†’ redact automatically, If rate limit exceeded β†’ queue request, If policy violation β†’ block and log

market_analyst

L4

Domain-specific analysis: trend detection, volatility, correlation

πŸ”§ technical_indicators (RSI, MACD, Bollinger), sentiment_analyzer (LLM), correlation_calculator

⚑ Recovery: If insufficient data β†’ use longer time window, If sentiment analysis fails β†’ use neutral baseline, Always provide confidence intervals

report_generator

L2

Formats analysis into PDF/Excel/dashboard, applies branding

πŸ”§ template_renderer, chart_generator, pdf_converter, branding_applier

⚑ Recovery: If template error β†’ use fallback template, If chart generation fails β†’ use table format, If PDF conversion fails β†’ deliver HTML

ML Layer

Feature Store

Update: Real-time (streaming) + Daily batch refresh

  • β€’ price_change_1d, 7d, 30d
  • β€’ volume_ratio (current/avg)
  • β€’ rsi_14, macd, bollinger_band_position
  • β€’ news_sentiment_score
  • β€’ sector_correlation
  • β€’ volatility_index

Model Registry

Strategy: Semantic versioning (major.minor.patch), staged rollout

  • β€’ trend_predictor
  • β€’ volatility_forecaster
  • β€’ insight_generator

Observability Stack

Real-time monitoring, tracing & alerting

0 active
SOURCES
Apps, Services, Infra
COLLECTION
9 Metrics
PROCESSING
Aggregate & Transform
DASHBOARDS
5 Views
ALERTS
Enabled
πŸ“ŠMetrics(9)
πŸ“Logs(Structured)
πŸ”—Traces(Distributed)
report_generation_time_p95_ms
βœ“
data_ingestion_lag_p95_sec
βœ“
ml_inference_latency_p99_ms
βœ“
llm_tokens_per_report
βœ“
cost_per_report_usd
βœ“
quality_score_avg
βœ“

Deployment Variants

πŸš€

Startup Architecture

Fast to deploy, cost-efficient, scales to 100 competitors

Infrastructure

βœ“
Serverless (Lambda/Cloud Functions + API Gateway)
βœ“
Managed databases (RDS PostgreSQL, ElastiCache Redis)
βœ“
S3/GCS for storage
βœ“
Third-party LLM APIs (OpenAI, Anthropic)
βœ“
Auth0 for authentication
βœ“
Datadog for observability
β†’Single-tenant initially (multi-tenant via app-level isolation)
β†’No VPC (public endpoints with API keys)
β†’Pay-per-use pricing (low fixed costs)
β†’Deploy in 1-2 weeks
β†’Scale to 1K reports/day

Risks & Mitigations

⚠️ LLM API cost explosion (token usage spikes)

High

βœ“ Mitigation: Set hard cost limits ($500/day). Cache aggressively (Redis). Use cheaper models for non-critical tasks (GPT-3.5). Monitor token usage per request. Alert if anomaly detected.

⚠️ Market data API outage (Bloomberg/Reuters down)

Medium

βœ“ Mitigation: Multi-provider strategy (Bloomberg + Reuters + Alpha Vantage). Cache recent data (5min). Fallback to cached data if all APIs down. SLA with providers (99.9% uptime).

⚠️ Hallucinated financial data (LLM invents numbers)

Medium

βœ“ Mitigation: 4-layer hallucination detection (confidence, fact-check, logic, human review). Never deliver report with quality score <0.7. Audit all claims against ground truth.

⚠️ Compliance violation (FINRA, SEC regulations)

Low

βœ“ Mitigation: Guardrail Agent enforces policies. Legal review of all prompts/templates. Audit trail (7yr retention). Annual compliance audit. Disclaimers on all reports.

⚠️ Data breach (unauthorized access to client reports)

Low

βœ“ Mitigation: Encryption at rest + in transit. RBAC (least privilege). MFA for all users. Audit logs. Penetration testing (quarterly). SOC2 certification.

⚠️ Model drift (market behavior changes, accuracy drops)

High

βœ“ Mitigation: Continuous monitoring (feature drift, prediction drift, performance drift). Automated retraining (weekly). A/B testing new models. Rollback if performance degrades.

⚠️ Vendor lock-in (OpenAI API dependency)

Medium

βœ“ Mitigation: Multi-LLM strategy (OpenAI + Anthropic + self-hosted). Abstract LLM calls (interface pattern). Evaluate alternatives quarterly. Maintain self-hosted Llama as backup.

🧬

Evolution Roadmap

Progressive transformation from MVP to scale

🌱
Phase 1Weeks 1-12

Phase 1: MVP (0-3 months)

1
Deploy serverless architecture (Lambda + RDS)
2
Integrate 2 market data providers (Alpha Vantage + Reuters)
3
Implement 3 core agents (Planner, Executor, Evaluator)
4
Generate 100 reports/day
5
Achieve 80% accuracy on trend prediction
Complexity Level
β–Ό
🌿
Phase 2Weeks 13-24

Phase 2: Scale (3-6 months)

1
Migrate to queue-based architecture (SQS + workers)
2
Add Bloomberg integration
3
Implement Guardrail Agent + ML Layer (feature store, model registry)
4
Scale to 1K reports/day
5
Achieve 85% accuracy, <5s latency
Complexity Level
β–Ό
🌳
Phase 3Weeks 25-52

Phase 3: Enterprise (6-12 months)

1
Deploy Kubernetes (multi-region)
2
Add Market Analysis Agent + Report Generator Agent
3
Implement multi-LLM failover
4
Scale to 10K+ reports/day
5
Achieve 87% accuracy, <3s latency, 99.9% uptime
Complexity Level
πŸš€Production Ready
πŸ—οΈ

Complete Systems Architecture

9-layer end-to-end architecture

1
🌐

Presentation

4 components

Web Dashboard (React)
Mobile App (React Native)
Email Reports
Slack/Teams Integrations
2
βš™οΈ

API Gateway

4 components

Load Balancer (ALB/Cloud Load Balancer)
Rate Limiter (per tenant)
Auth Proxy (OIDC/SAML)
API Versioning
3
πŸ’Ύ

Agent Layer

6 components

Planner Agent
Executor Agent
Evaluator Agent
Guardrail Agent
Market Analysis Agent
Report Generator Agent
4
πŸ”Œ

ML Layer

5 components

Feature Store (Tecton/Feast)
Model Registry (MLflow)
Inference Service (real-time + batch)
Evaluation Pipeline
Prompt Store (versioned)
5
πŸ“Š

Integration

4 components

Market Data Adapters
Banking API Connectors
Compliance System Bridge
Analytics Export
6
🌐

Data

4 components

PostgreSQL (metadata, users, reports)
TimescaleDB (time-series market data)
Redis (cache, rate limiting)
S3/GCS (raw data, reports, logs)
7
βš™οΈ

External

5 components

Bloomberg API
Reuters API
Alpha Vantage
News APIs
LLM APIs (OpenAI, Anthropic)
8
πŸ’Ύ

Observability

4 components

Metrics (Prometheus/Datadog)
Logs (CloudWatch/Elasticsearch)
Traces (Jaeger/Honeycomb)
Eval Dashboard (custom)
9
πŸ”Œ

Security

5 components

IAM/RBAC
KMS (encryption keys)
WAF
Audit Logger
PII Redaction Service
πŸ”„

Sequence Diagram - Report Generation Flow

Automated data flow every hour

Step 0 of 12
UserAPI GatewayPlanner AgentMarket Data ServiceExecutor AgentML InferenceEvaluator AgentReport GeneratorStoragePOST /reports/generate {ticker: AAPL, type: daily}plan(request)fetch_data(AAPL, last_24h)time_series_data (prices, volumes, news)execute_analysis(data, plan)predict_trends(features)predictions (trend: bullish, confidence: 0.87)validate(output)quality_score: 0.92, approvedgenerate_report(analysis, template)save_report(pdf, metadata)200 OK {report_id, url}

End-to-End Data Flow

From market data ingestion to report delivery in 8 steps

1
Market Data APIs0s (continuous)
Stream real-time prices, news, sentiment β†’ JSON (ticker, price, timestamp, source)
2
Data Ingestion Service1-2s lag
Validate, normalize, store in TimescaleDB β†’ Time-series records
3
Feature StoreReal-time + 5min batch
Compute features (RSI, sentiment, volatility) β†’ Feature vectors
4
Planner Agent200ms
Receive report request, create execution plan β†’ Task DAG
5
Executor Agent3-5s
Fetch features, call ML models, generate insights β†’ Analysis JSON
6
Evaluator Agent500ms
Validate quality, check compliance β†’ Quality score + approval
7
Report Generator1-2s
Render PDF/Excel with charts β†’ Report file
8
Storage + Delivery500ms
Save to S3, send email/Slack notification β†’ Report URL
1
Volume
0-100 reports/day
Pattern
Serverless Monolith
πŸ—οΈ
Architecture
API Gateway + Lambda/Cloud Functions
Managed PostgreSQL (RDS/Cloud SQL)
Redis (ElastiCache/MemoryStore)
S3/GCS for reports
OpenAI/Anthropic API (pay-per-use)
Cost & Performance
$200/month
per month
5-10s per report
2
Volume
100-1K reports/day
Pattern
Queue + Workers
πŸ—οΈ
Architecture
API server (ECS/Cloud Run)
Message queue (SQS/Pub/Sub)
Worker pool (auto-scaling)
TimescaleDB (time-series data)
Redis (cache + rate limiting)
S3/GCS (data lake)
Cost & Performance
$800/month
per month
3-5s per report
3
Volume
1K-10K reports/day
Pattern
Multi-Agent Orchestration
πŸ—οΈ
Architecture
Load balancer (ALB/Cloud Load Balancer)
Agent framework (LangGraph on K8s/ECS)
Event bus (Kafka/EventBridge)
Feature store (Tecton/Feast)
Model registry (MLflow)
Multi-region database replication
Cost & Performance
$3K/month
per month
2-4s per report
Recommended
4
Volume
10K-100K reports/day
Pattern
Enterprise Multi-Tenant
πŸ—οΈ
Architecture
Kubernetes (EKS/GKE) with HPA
Kafka (streaming data + events)
Multi-LLM failover (OpenAI + Anthropic + self-hosted)
Distributed feature store (Feast + Redis Cluster)
Multi-region PostgreSQL (active-active)
CDN for report delivery
Cost & Performance
$12K+/month
per month
1-3s per report

Key External Integrations

Bloomberg Terminal API

Protocol: BLPAPI (proprietary)
Subscribe to real-time feeds (BDP, BDH)
Receive tick data via WebSocket
Normalize to internal schema
Store in TimescaleDB

Reuters Eikon API

Protocol: REST + WebSocket
Authenticate with client credentials
Request historical data (GET /data/historical)
Stream real-time updates (WebSocket)
Deduplicate + merge with Bloomberg data

Alpha Vantage (backup)

Protocol: REST API
Fetch daily/intraday data
Use as fallback if primary sources fail
Rate limit: 5 calls/min (free tier)

Banking APIs (Plaid, Yodlee)

Protocol: REST + OAuth 2.0
Link user accounts
Fetch transaction data
Enrich reports with portfolio context

Compliance Systems (ComplyAdvantage)

Protocol: REST API
Screen reports for compliance violations
Check against sanctions lists
Flag suspicious patterns

Security & Compliance Architecture

Failure Modes & Recovery

FailureFallbackImpactSLA
Primary LLM API down (OpenAI outage)Auto-switch to Anthropic Claude β†’ If both down, queue requests β†’ Notify users of delayDegraded (slower response), not broken99.5% (5min/week downtime allowed)
Market data API timeout (Bloomberg)Retry 3x with exponential backoff β†’ Use cached data (up to 5min old) β†’ Switch to Reuters β†’ If all fail, use Alpha VantageSlightly stale data (acceptable for most reports)99.9% (data freshness <10min)
ML model inference error (prediction service crash)Use rule-based fallback (technical indicators only) β†’ Flag report as 'limited analysis' β†’ Human review queueReduced insight quality, but report still generated99.0% (ML uptime)
Database unavailable (PostgreSQL crash)Read from replica (read-only mode) β†’ Queue write operations β†’ Use cached data for report generationCannot create new reports, can view existing99.95% (database uptime)
Quality score below threshold (Evaluator rejects output)Regenerate with stricter prompts β†’ If still fails, route to human analyst β†’ Do not deliver low-quality reportDelayed delivery (human review adds 30min-2hr)100% (never deliver bad reports)
Compliance violation detected (Guardrail blocks report)Block delivery immediately β†’ Alert compliance team β†’ Log incident β†’ Offer manual reviewReport not delivered (safety first)100% (compliance must be enforced)
Cost spike (LLM token usage 10x normal)Rate limit new requests β†’ Use cheaper models (GPT-3.5 instead of GPT-4) β†’ Alert finance teamSlower/lower-quality reports, but cost controlledCost per report <$0.30
System Architecture
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   API Gateway                        β”‚
β”‚           (Auth, Rate Limit, Load Balance)          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚  Planner Agent       β”‚ ← Receives request, creates plan
         β”‚  (Task Decomposition)β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      β”‚              β”‚              β”‚
β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
β”‚ Guardrail β”‚  β”‚Executor β”‚  β”‚Market      β”‚
β”‚   Agent   β”‚  β”‚ Agent   β”‚  β”‚Analysis    β”‚
β”‚ (Policy)  β”‚  β”‚(Workflow)β”‚ β”‚Agent       β”‚
β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
      β”‚             β”‚              β”‚
      β”‚      β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”       β”‚
      β”‚      β”‚  ML Layer   β”‚       β”‚
      β”‚      β”‚ (Features,  β”‚       β”‚
      β”‚      β”‚  Models)    β”‚       β”‚
      β”‚      β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜       β”‚
      β”‚             β”‚              β”‚
      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
            β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚  Evaluator     β”‚ ← Validates quality
            β”‚    Agent       β”‚
            β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
            β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚Report Generatorβ”‚ ← Formats output
            β”‚     Agent      β”‚
            β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
            β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚   Storage      β”‚
            β”‚  (S3, DB)      β”‚
            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ”„Agent Collaboration Flow

1
API Gateway
Receives report request (ticker, type, date_range) β†’ Authenticates user β†’ Routes to Planner Agent
2
Planner Agent
Analyzes request β†’ Decides: need market data + news + sentiment β†’ Creates execution plan (task DAG) β†’ Sends to Executor Agent
3
Guardrail Agent
Intercepts plan β†’ Checks: user has permission? within rate limits? no policy violations? β†’ Approves or blocks
4
Executor Agent
Fetches market data (prices, volumes) β†’ Calls Market Analysis Agent for insights β†’ Calls ML Layer for predictions
5
Market Analysis Agent
Computes technical indicators (RSI, MACD) β†’ Analyzes sentiment (news, social media) β†’ Returns trend analysis (bullish/bearish/neutral)
6
ML Layer
Retrieves features from Feature Store β†’ Runs inference (trend prediction, volatility forecast) β†’ Returns predictions with confidence scores
7
Executor Agent
Combines market analysis + ML predictions β†’ Generates insights (key drivers, risks, opportunities) β†’ Sends to Evaluator Agent
8
Evaluator Agent
Validates quality (coherence, factuality, completeness) β†’ Checks for hallucinations β†’ Scores output (0-1) β†’ If score >= 0.7, approve; else, flag for human review
9
Guardrail Agent
Scans output for PII, compliance violations, inappropriate content β†’ Redacts if needed β†’ Final approval
10
Report Generator Agent
Formats analysis into PDF/Excel β†’ Applies branding β†’ Generates charts β†’ Saves to S3 β†’ Returns URL to user

🎭Agent Types

Reactive Agent

Low

Report Generator - Responds to input (analysis data), returns output (PDF)

Stateless

Reflexive Agent

Medium

Market Analysis Agent - Uses rules + context (technical indicators + news)

Reads context (market data, news)

Deliberative Agent

High

Planner Agent - Plans tasks based on request, selects tools, creates DAG

Stateful (tracks plan execution)

Orchestrator Agent

Highest

Executor Agent - Coordinates multiple agents, handles loops, makes routing decisions

Full state management (workflow state machine)

πŸ“ˆLevels of Autonomy

L1
Tool
Human calls, agent responds (no decisions)
β†’ Monday's prompts (user asks, LLM answers)
L2
Chained Tools
Sequential execution (predefined order)
β†’ Tuesday's code (extract β†’ validate β†’ generate, fixed pipeline)
L3
Agent
Makes decisions, can loop, adapts to context
β†’ Planner Agent (decides which data sources to use, creates dynamic plan)
L4
Multi-Agent System
Agents collaborate autonomously, negotiate, self-organize
β†’ This system (Planner delegates to Executor, Evaluator provides feedback, Guardrail enforces policies)

RAG vs Fine-Tuning Decision

Market data changes constantly (RAG is better). Report style is stable (fine-tuning is better). Combine both for optimal results.
βœ… RAG (Chosen)
Cost: $100/mo (vector DB + embeddings)
Update: Real-time (ingest news as it happens)
How: Embed news articles, retrieve top-k for context
❌ Fine-Tuning
Cost: $2K/mo (training + hosting)
Update: Quarterly (retrain on new report examples)
How: Fine-tune GPT-4 on 500 expert-written reports
Implementation: Pinecone for RAG (news, earnings calls, SEC filings). Fine-tuned GPT-4 for report generation. Combine: retrieve context β†’ pass to fine-tuned model β†’ generate report.

Hallucination Detection

LLMs hallucinate financial data (fake earnings, incorrect prices, invented trends)
L1
Confidence scoring (model outputs probability, flag if <0.8)
L2
Fact-checking against ground truth (cross-reference prices with market data APIs)
L3
Logical consistency (e.g., if price increased, trend should be bullish)
L4
Human-in-the-loop (analyst reviews flagged reports before delivery)
Hallucination rate: 0.5% (5 per 1000 reports), 100% caught before delivery

Evaluation Framework

Trend Prediction Accuracy
87.3%target: 85%+
Insight Relevance
91.2%target: 90%+
Factuality Score
96.1%target: 95%+
Report Coherence
4.6/5target: 4.5/5
Testing: Shadow mode: Generate 1000 reports in parallel with human analysts. Compare quality, speed, cost. Iterate until parity reached.

Dataset Curation

1
Collect: 5K historical reports - Scrape from public sources + internal archives ($$0)
2
Clean: 4.2K usable - Remove duplicates, filter low-quality, normalize format ($$5K (manual review))
3
Label: 4.2K labeled - Expert analysts annotate (trend, key insights, quality score) ($$42K (100 hrs Γ— $420/hr))
4
Augment: +1K synthetic - Generate edge cases (market crashes, unusual volatility, data gaps) ($$2K (LLM generation))
β†’ 5.2K high-quality examples. Inter-annotator agreement (Cohen's Kappa): 0.89. Used for fine-tuning + evaluation.

Agentic RAG

Agent iteratively retrieves based on reasoning, not one-shot
User asks for AAPL report β†’ Agent reasons: 'Need recent news' β†’ RAG retrieves 10 articles β†’ Agent reasons: 'Need earnings data' β†’ RAG retrieves Q4 earnings β†’ Agent reasons: 'Need sector comparison' β†’ RAG retrieves tech sector index β†’ Generate report with full context.
πŸ’‘ Agent decides what else it needs to know. Not blind retrieval. Better context, better reports.

Model Monitoring & Drift Detection

Technology Stack

LLMs
OpenAI GPT-4 (primary), Anthropic Claude (backup), self-hosted Llama 3 (cost optimization)
Agent Orchestration
LangGraph (Python), LangChain (tool integration), custom orchestrator (TypeScript)
Databases
PostgreSQL (metadata, users, reports), TimescaleDB (time-series market data), Redis (cache, rate limiting)
Message Queue
AWS SQS (startup), Apache Kafka (enterprise)
Compute
AWS Lambda (startup), Kubernetes/EKS (enterprise), ECS Fargate (hybrid)
Feature Store
Tecton (managed) or Feast (open-source)
Model Registry
MLflow
Observability
Datadog (startup), Prometheus + Grafana (enterprise), Sentry (error tracking)
Security
AWS KMS (encryption), Auth0/Okta (SSO), AWS Secrets Manager, CloudWatch (audit logs)
CI/CD
GitHub Actions (code), Terraform (infrastructure), ArgoCD (K8s deployments)
πŸ—οΈ

Need Architecture Review?

We'll audit your system design, identify bottlenecks, and show you how to scale 10x while reducing costs.

Β©

2026 Randeep Bhatia. All Rights Reserved.

No part of this content may be reproduced, distributed, or transmitted in any form without prior written permission.